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Abstract. A high-density diquark phase seems to be a generic feature of QCD. If so it should also be
reproduced by random matrix models. We discuss a specific one in which the random matrix elements of the
Dirac operator are supplemented by a finite chemical potential and by non-random elements which model
the formation of instanton–anti-instanton molecules. Comparing our results to those found in a previous
investigation by Vanderheyden and Jackson we find additional support for our starting assumption, namely
that the existence of a high-density diquark phase is common to all QCD-like model.

PACS. 11.30.Rd Chiral symmetries – 12.38.Mh Quark-gluon plasma – 12.38.Aw General properties of
QCD (dynamics, confinement, etc.)

1 Introduction

The understanding of the QCD phase diagram at finite
density and temperature is of fundamental interest to in-
vestigate phenomena related to heavy-ion collisions and
to the physics of neutron stars. While first principles lat-
tice calculations are able to take into account the effects
of finite temperature, the addition of a baryonic chemi-
cal potential to the lattice action makes the fermionic de-
terminant complex, which prevents reliable Monte Carlo
calculations. Resorting to specific QCD models or to an
asymptotic QCD expansion for very large temperature or
chemical potential µ is thus necessary to investigate the
finite density domain. These models allow to study the
symmetries of the different regions of the phase diagram;
of particular interest is the study of the chiral restora-
tion at finite temperature and/or density. Recently, a lot
of attention has been focused on the so-called “colour su-
perconductivity”: at large density and low temperature,
an arbitrarily weak attractive force makes the Fermi sea
of quarks unstable with respect to diquark formation and
induces Cooper pairing (diquark condensation) [1–4]. At
still higher µ this turns into still another, so-called colour-
flavour-locked, phase[5]. As already stated, there exists no
really reliable QCD technique to analyse these phases, ex-
cept for completely unrealistically large µ. However, all
the different approaches used so far yield the same gen-
eral picture which gives credence to the assumption that
it is generic. Some of the different approaches followed
are NJL-like models [3], which can be closely related to
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models based on the instanton phenomenology [4], the
Dyson-Schwinger approach [6], and, at very large µ, weak
coupling expansions [7]. These calculations agree in their
main conclusions and suggest a fairly large gap (on the
order of 100 MeV), which could have some observational
consequences in neutron stars and possibly even heavy-
ion collisions (for recent reviews see [8,9]). One should
note however that colour superconductivity in QCD dif-
fers from usual superconductivity in the following sense:
for large chemical potential, the Renormalisation Group
Approach leads to an asymptotic dependence of the gap
as a function of the QCD coupling constant of the kind
∆ ∼ exp [−c/g] [10]. The naive expectation from BCS
theory would be in contrast ∆ ∼ exp [−c/g2]. This differ-
ence in behaviour is due to the long-range nature of the
magnetic interaction in QCD: while non-static magnetic
modes of the gluon propagator are dynamically screened
due to Landau damping, static magnetic modes are not
screened. It leads to a considerable enhancement of the
QCD superconducting gap.

To test the hypotheses that these new phases are in-
deed a generic feature of QCD and QCD-like models, such
that the insufficiencies of the individual approaches are
unimportant for the existence of these phases, Random
Matrix Theory (RMT) is the ideal tool. The main idea
of RMT is in fact to isolate generic features. In the past
RMT was succesfully used to analyse the eigenvalues of
the QCD Dirac operator as obtained in lattice gauge cal-
culations. For a recent review see [11]. The perfect agree-
ment between RMT predictions and lattice QCD results
led to the general conviction that RMT does apply to
QCD, though a rigorous formal proof is still missing.



304 The European Physical Journal A

Z(µ, d, α)=
∫

DHDψ†
1Dψ1DψT

2 Dψ∗
2 exp

[
i

(
ψ†

1

ψT
2

)T (H+ (D + iµ)γ0 + im ηP∆

−η∗P∆ −HT + (D − iµ)γT
0 − im

)(
ψ1

ψ∗
2

)]
(2)

RMT is especially suited to investigate the chiral phase
transition. The Banks-Casher relation

〈qq̄〉 = − π

V4
ρ(λ)|λ=0 (1)

relates the chiral condensate 〈qq̄〉 to the density ρ of zero
eigenvalues of the Dirac equation and the latter was shown
to display universal properties described by RMT. Univer-
sal spectral correlations of the QCD Dirac operator can
also be computed at finite temperature. In addition to
giving exact results for correlations of eigenvalues, RMT
can also be used as a schematic model to investigate non-
universal quantities.

Recently, Vanderheyden and Jackson have investigated
the phase diagram of a QCD-like theory with generic 4-
quark couplings in the framework of a RMT model [12,
13] with two quark flavours. Using a saddle point approxi-
mation they derived the thermodynamic potential for the
quark and diquark condensates and studied the competi-
tion between chiral restoration and diquark condensation
as a function of temperature and density. They analysed
the phase diagram for different values of the coupling con-
stants in the diquark (〈qq〉) and chiral (〈qq̄〉) channels and
showed that the phase diagram can realize a total of six
general structures.

To model the effects of temperature, Vanderheyden
and Jackson include the lowest Matsubara frequency only.
In a more recent work [14], they have also investigated
the phase diagram of Nc = 2 QCD with all Matsub-
ara frequencies included. While the inclusion of all Mat-
subara frequencies does not affect the topology of the
phase diagram, it eliminates some unphysical properties
like negative baryonic densities at small µ and the vari-
ation of the chiral condensate with µ. The combination
of RMT and the Matsubara formalism is, however, only
well justified if there are no relevant effects beyond the
boundary condition in Euclidian time. QCD just above
the phase transition shows, however, strong correlations
between the quarks and gluons of a type which can hardly
be described by such a simple model. In this contribu-
tion, we therefore try to improve the pioneering paper
by Vanderheyden and Jackson in this respect by allow-
ing for a more general type of non-random matrix ele-
ments. We assume that the properties of the lowest Dirac
eigenstates are primarily determined by instanton and
anti-instanton field configurations. In the instanton pic-
ture [15], spontaneous chiral symmetry breaking is as-
sumed to be generated by randomly distributed uncorre-
lated instantons/anti-instantons, which allows for a delo-
calization of the associated quark quasi-zero modes. The
restoration of chiral symmetry at high temperature (or
high density) can then be realized if the instanton liquid
changes from a random ensemble of instantons and anti-
instantons to a correlated system where instanton and

anti-instanton pair to form so-called “molecules” [16], the
precise definition of which is ambiguous but also irrelevant
for our purposes. The formation of such clusters has been
observed on the lattice [17] and in numerical simulations of
the instanton liquid [18] (for more references on this sub-
ject, see also [9]). Of course, other scenarii for chiral sym-
metry restoration have been proposed; this phase transi-
tion can, for example, also be seen as a Mott-Anderson–
like transition to an “insulator state” [19]. In this work,
however, we assume that the dominant mechanism for chi-
ral symmetry restoration involves instanton molecular cor-
relations. In [20] such a molecular model was used to study
the chiral phase transition in the framework of RMT at
zero density. The instanton configuration (and therefore
the temperature) was characterized by two parameters. It
was found that to reduce the value of the chiral condensate
by more than a factor two, about 95 percent of the instan-
tons and anti-instantons have to pair in molecules, which
confirmed the decisive role played by molecules formation
in the restoration of chiral symmetry at finite tempera-
ture. In this paper, we want to generalize the results of
[20] to finite chemical potential. That will allow us to in-
vestigate the stability of the results found in [12,13] when
the temperature effects are not modelled in the most ele-
mentary manner by the first Matsubara frequency. Within
RMT the properties of the chiral phase transition are de-
termined by the interplay between fluctuations (described
by the random matrix elements) and constant terms (for
fixed T and µ) in the Dirac operator. In [12,13] the latter
were assumed to be the same for all states, while we allow
for the possibility that they only contribute for a certain
fraction of them. We find that for small µ the existence
of a phase transition is extremely sensitive to this fraction
(and thus to the detailed instanton–anti-instanton dynam-
ics), while it becomes nearly independent of it for large µ,
suggesting that the transition to a diquark condensate is
indeed a model-independent feature.

2 Formulation of the model

Apart for the parametrization of temperature we follow
closely the approach adopted by Vanderheyden and Jack-
son [12,13] and refer to their original papers for details of
the derivation of the thermodynamic potential. Our start-
ing partition function (for two quark flavours ψ1 and ψ2)
is the following:

see equation (2) above

i.e., it is the same as in eq. (1) of [13] but with the substi-
tution πT1N → D with D being a N×N diagonal matrix,
for which a fraction α of its diagonal elements are equal to
a fixed value d and the rest is zero. This form is motivated



S. Pepin and A. Schäfer: QCD at high baryon density in a random matrix model 305
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2
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by the observation that the correlation of instantons and
anti-instantons (i.e. the formation of molecules) generates
such diagonal terms. The size of these terms depends on
the anti-instanton–instanton separation and d has to be
interpreted as an average value. If α = 1 (that is, if all
instantons and anti-instantons form molecules), one re-
covers the model of Vanderheyden and Jackson. Let us
stress that there are good arguments to assume that for
the physical phase transition α is in fact close to 1. We
shall discuss some of them in the conclusion.

In (2), m is the current mass of the quark and η the
source term for the diquark condensate 〈ψT

2 P∆ψ1〉, where
P∆ ≡ iCγ5λ2 projects on a colour 3̄, scalar diquark state
(C is the charge conjugation matrix). η has to be taken to
zero at the end of the calculations. A general Hermitian
interaction H can be written as an expansion over the
sixteen Dirac matrices ΓK times the N2

c colour matrices
λa:

Hλiαk;κjβl =
16∑
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(ΓK)λi;κj

N2
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The measure DH associated with the random matrices
AKa is
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with DAKa
λκ being the Haar measure. βK = 1 if K corre-

sponds to vector or axial-vector interaction and βK = 1/2
if K is scalar, pseudo-scalar or tensor. The variance ΣKa

is the same for all channels.
Following [12,13], one first performs the integration

over the random matrix interaction and then uses a
Hubbard-Stratonovitch transformation to introduce two
auxiliary variables σ and ∆, associated, respectively, with
the chiral and diquark condensate. After integrating out
the fermion fields, one obtains the following partition func-
tion:

Z(µ, α, d) =
∫

dσd∆ exp [−4NΩ(σ,∆)] (5)

with the thermodynamic potential Ω(σ,∆):

see equation (6) above

As discussed in [12,13], the couplings B and A are
weighted averages of the Fierz coefficients obtained by
projection of the original interaction on chiral and scalar
diquark channels, respectively. The ratio B/A is the only
independent parameter and measures the balance between
chiral and diquark condensation; varying this ratio allows
to explore all the different possible structures of the phase
diagram. Imposing the interaction to be Hermitian gives
the upper bound B/A ≤ Nc/2. The absolute magnitudes
of A and B play a secondary role. They introduce a scale
for the condensating fields but do not affect the structure
of the phase diagram. In the following calculations, we fix
A = 1 and vary B.

To study the various phases for a given value of B/A,
one must minimize the potential Ω with respect to both
condensates and solve the resulting gap equations. One
can already notice that, if α �= 1, the second term of this
potential is singular at zero density if the chiral condensate
vanishes, σ = 0 (the current quark mass m will be set to
zero in the following calculations). This is due to the fact
that chiral symmetry cannot be completely restored at
zero density unless all the instantons and anti-instantons
form molecules (i.e. α = 1), see also [20].

3 Results and discussion

The gap equations derived from the potential (6) admit
four kinds of solutions: the trivial vacuum, where both
condensates σ and ∆ are zero; the chirally broken phase,
where σ �= 0 and ∆ = 0; the colour superconducting phase
(∆ �= 0, σ = 0); the mixed phase, where both condensates
are non-zero. By varying the ratio B/A, we recovered the
various scenarios discussed in [13]; in particular, the mixed
phase appears only for B/A ≥ 1.05. We first present re-

sults for the coupling ratio B/A =
1
2

(
Nc

Nc − 1

)
= 0.75

corresponding to one-gluon-exchange as well as to an
instanton-induced interaction. Figure 1 shows the phase
diagram in the (µ, d)-plane for six different values of the
molecule fraction α: 1, 0.99, 0.9, 0.7, 0.5 and 0.1.

Such phase diagrams can be misleading if the actual
condensate values are too small to be stable against fluc-
tuations. This does, however, not seem to be the case, as
can be seen from figs. 2 and 3.

For α = 1, one recovers the results of [13] by identi-
fying the parameter d with the first Matsubara frequency
πT . We have checked that the restoration of chiral symme-
try is first order for small enough d (d < 1.57). The phase
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Fig. 1. Phase diagram for B/A = 0.75. The x-axis corresponds to the chemical potential; the y-axis to the parameter d. χ and ∆
label the chiral and diquark phase, respectively. Dashed and continuous lines correspond, respectively, to first- and second-order
phase transitions. Note that QCD phenomenology suggests that at the phase transition α is close to 1.
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Fig. 2. The strength of the quark condensates σ in fig. 1
(B/A = 0.75).

diagram changes noticeably for α �= 1: as anticipated pre-
viously, chiral symmetry cannot be restored at zero den-
sity. (This is well known, as α �= 1 implies the presence of
isolated instantons and thus zero modes.) The chiral tran-
sition becomes first order for all values of d, so there is no
longer a tricritical point in the phase diagram. Moreover,
the diquark phase appears also at large d and relatively
low density. If α is further decreased, the diquark phase
extends to all values of d and for growing values of d the
chiral symmetry restoration occurs at higher µ. One notes,
however, that chiral symmetry restoration always occurs
for µ above a certain critical value, even if the fraction of
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Fig. 3. The strength of the diquark condensates ∆ in fig. 1.

instanton molecules is small. We conclude that for small
µ the properties of the chiral phase transition depend cru-
cially on the detailed instanton–anti-instanton dynamics.
In contrast, the occurrence of a diquark phase seems to
be a generic property of the phase diagram whatever the
fraction of molecules.

For larger value of the B/A ratio a mixed phase ap-
pears: we show in fig. 4 the results for the case B/A = 1.4.

Again we reproduce the results of [13] in the case
α = 1. The transition from the mixed phase χ∆ to the
diquark phase ∆ is first order for d < 1.1. For α < 1, the
changes in the phase diagram are similar to the ones ob-
served in fig. 1. The mixed phase and the diquark phase
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Fig. 4. Same as fig. 1 but for B/A = 1.4. χ∆ labels the mixed phase.

extend over the whole range of d and the transition from
the mixed phase to the diquark phase is now first order
for all values of d. As in the previous case the diagram is
stable only for high enough µ.

For completeness, we have also checked the results ob-
tained in [13] when the current quark mass m is non-zero.
For α = 1, one recovers their phase diagram, where a
first-order transition line (corresponding to the first-order
chiral transition of the chiral limit) ends in a critical point.
This critical point, however, disappears if α �= 1 and one
finds a first-order transition for all d.

Before we conclude this section, we consider briefly the
case Nc = 2. As has been shown in [12,13], the ratio B/A
is necessarily equal to one in that case. At zero chemical
potential, the potential Ω depends on the condensation
fields σ and ∆ through the combination σ2 +∆2. As soon
as µ �= 0, this symmetry is broken and the chiral con-
densate vanishes; the system prefers diquark condensation
over chiral symmetry breaking. The same conclusions are
valid for a molecule fraction α �= 1: the only difference is
that the diquark condensate stays non-zero at low µ even
for large values of d.

4 Conclusions

We have investigated the phase diagram of QCD as a func-
tion of density and temperature within Random Matrix
Theory along the lines of [12,13]. The aim was to dis-
tinguish generic and specific properties. We did not treat
the temperature dependence explicitly but encoded it in
the fraction α(µ, T ) and strength d(µ, T ) of instanton–
anti-instanton correlations. We studied the stability of the

phase diagram with respect to variations of α and d in
comparison with the results of [13]. We found that the
low-density part of the phase diagram is highly depen-
dent on α(µ, T ) and d(µ, T ) and, thus, on the detailed
instanton dynamics, while, on the other hand, the phase
diagram is rather stable for high densities. We also found
that for finite µ not all instantons and anti-instantons have
to combine into molecules to allow for a chiral phase tran-
sition. These are our main results. Of course, Random Ma-
trix Theory only allows us to derive qualitative results. In
particular, it cannot address the question mentioned in
the introduction about the dependence of the gap on the
QCD coupling constant; this dependence is closely related
to the behaviour of the gluon propagators, while our ap-
proach amounts to use a contact quark interaction.

For quantitative studies we need realistic models for
the functions α(µ, T ) and d(µ, T ), i.e. specific input which
goes beyond RMT. The fraction of molecules has been
calculated as a function of temperature at zero density in
[21], where it was shown that the fraction of molecules
jumps rapidly from α ∼ 0.5 at T = 0.7 Tc to 1 at Tc.
In refs. [9,22] the molecule density was computed as a
function of the chemical potential at zero temperature. It
was found that there is a delicate competition between
random instantons engaged in diquarks and molecule for-
mation: in fact, the former are dominant and induce the
chiral transition. The fraction of atomic instantons goes,
however, also in this case, to zero when chiral symmetry
is restored. In our case also, the diquark phase appears
in the regions of the phase diagram where the effects of
molecules are weak enough (meaning either a small frac-
tion α or a relatively low value of d).
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Relating our phase diagrams to the one in the (µ, T )-
plane is not a trivial question. We have shown that the
phase diagram is rather unstable at low density, which
means that its characteristics in the (µ, T )-plane should
depend on the details of the functions α(µ, T ) and d(µ, T ).
The results quoted above indicate that the fraction of
molecules α changes abruptly at the phase transition. It is
natural to assume that this will also happen for the inter-
mediate case (T and µ non-zero), which suggests a large
value of α. Whether this value will be exactly equal to
one (which, as we have seen, is necessary for a vanishing
of the chiral condensate) or not is not known. However, if
the value of α is large enough (> 0.9), the chiral conden-
sate will anyway not be stable against fluctuations. We feel
that our present understanding of the QCD phase transi-
tion is insufficient for reliable quantitative models for the
functional form of α(µ, T ) and d(µ, T ).
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knowledge helpful discussions with M. Alford, A. Jackson, B.
Vanderheyden, and H.A. Weidenmüller.
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